846 research outputs found

    Extrapolation-Based Implicit-Explicit Peer Methods with Optimised Stability Regions

    Get PDF
    In this paper we investigate a new class of implicit-explicit (IMEX) two-step methods of Peer type for systems of ordinary differential equations with both non-stiff and stiff parts included in the source term. An extrapolation approach based on already computed stage values is applied to construct IMEX methods with favourable stability properties. Optimised IMEX-Peer methods of order p = 2, 3, 4, are given as result of a search algorithm carefully designed to balance the size of the stability regions and the extrapolation errors. Numerical experiments and a comparison to other implicit-explicit methods are included.Comment: 21 pages, 6 figure

    Entropy-Preserving Coupling Conditions for One-dimensional Euler Systems at Junctions

    Full text link
    This paper is concerned with a set of novel coupling conditions for the 3×33\times 3 one-dimensional Euler system with source terms at a junction of pipes with possibly different cross-sectional areas. Beside conservation of mass, we require the equality of the total enthalpy at the junction and that the specific entropy for pipes with outgoing flow equals the convex combination of all entropies that belong to pipes with incoming flow. Previously used coupling conditions include equality of pressure or dynamic pressure. They are restricted to the special case of a junction having only one pipe with outgoing flow direction. Recently, Reigstad [SIAM J. Appl. Math., 75:679--702, 2015] showed that such pressure-based coupling conditions can produce non-physical solutions for isothermal flows through the production of mechanical energy. Our new coupling conditions ensure energy as well as entropy conservation and also apply to junctions connecting an arbitrary number of pipes with flexible flow directions. We prove the existence and uniqueness of solutions to the generalised Riemann problem at a junction in the neighbourhood of constant stationary states which belong to the subsonic region. This provides the basis for the well-posedness of the homogeneous and inhomogeneous Cauchy problems for initial data with sufficiently small total variation.Comment: 17 pages, 2 figure

    A Bramble-Pasciak conjugate gradient method for discrete Stokes equations with random viscosity

    Full text link
    We study the iterative solution of linear systems of equations arising from stochastic Galerkin finite element discretizations of saddle point problems. We focus on the Stokes model with random data parametrized by uniformly distributed random variables and discuss well-posedness of the variational formulations. We introduce a Bramble-Pasciak conjugate gradient method as a linear solver. It builds on a non-standard inner product associated with a block triangular preconditioner. The block triangular structure enables more sophisticated preconditioners than the block diagonal structure usually applied in MINRES methods. We show how the existence requirements of a conjugate gradient method can be met in our setting. We analyze the performance of the solvers depending on relevant physical and numerical parameters by means of eigenvalue estimates. For this purpose, we derive bounds for the eigenvalues of the relevant preconditioned sub-matrices. We illustrate our findings using the flow in a driven cavity as a numerical test case, where the viscosity is given by a truncated Karhunen-Lo\`eve expansion of a random field. In this example, a Bramble-Pasciak conjugate gradient method with block triangular preconditioner outperforms a MINRES method with block diagonal preconditioner in terms of iteration numbers.Comment: 19 pages, 1 figure, submitted to SIAM JU

    Stability of explicit one-step methods for P1-finite element approximation of linear diffusion equations on anisotropic meshes

    Get PDF
    We study the stability of explicit one-step integration schemes for the linear finite element approximation of linear parabolic equations. The derived bound on the largest permissible time step is tight for any mesh and any diffusion matrix within a factor of 2(d+1)2(d+1), where dd is the spatial dimension. Both full mass matrix and mass lumping are considered. The bound reveals that the stability condition is affected by two factors. The first one depends on the number of mesh elements and corresponds to the classic bound for the Laplace operator on a uniform mesh. The other factor reflects the effects of the interplay of the mesh geometry and the diffusion matrix. It is shown that it is not the mesh geometry itself but the mesh geometry in relation to the diffusion matrix that is crucial to the stability of explicit methods. When the mesh is uniform in the metric specified by the inverse of the diffusion matrix, the stability condition is comparable to the situation with the Laplace operator on a uniform mesh. Numerical results are presented to verify the theoretical findings.Comment: Revised WIAS Preprin

    Extrapolation-Based Super-Convergent Implicit-Explicit Peer Methods with A-stable Implicit Part

    Get PDF
    In this paper, we extend the implicit-explicit (IMEX) methods of Peer type recently developed in [Lang, Hundsdorfer, J. Comp. Phys., 337:203--215, 2017] to a broader class of two-step methods that allow the construction of super-convergent IMEX-Peer methods with A-stable implicit part. IMEX schemes combine the necessary stability of implicit and low computational costs of explicit methods to efficiently solve systems of ordinary differential equations with both stiff and non-stiff parts included in the source term. To construct super-convergent IMEX-Peer methods with favourable stability properties, we derive necessary and sufficient conditions on the coefficient matrices and apply an extrapolation approach based on already computed stage values. Optimised super-convergent IMEX-Peer methods of order s+1 for s=2,3,4 stages are given as result of a search algorithm carefully designed to balance the size of the stability regions and the extrapolation errors. Numerical experiments and a comparison to other IMEX-Peer methods are included.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with arXiv:1610.0051

    On Asymptotic Global Error Estimation and Control of Finite Difference Solutions for Semilinear Parabolic Equations

    Full text link
    The aim of this paper is to extend the global error estimation and control addressed in Lang and Verwer [SIAM J. Sci. Comput. 29, 2007] for initial value problems to finite difference solutions of semilinear parabolic partial differential equations. The approach presented there is combined with an estimation of the PDE spatial truncation error by Richardson extrapolation to estimate the overall error in the computed solution. Approximations of the error transport equations for spatial and temporal global errors are derived by using asymptotic estimates that neglect higher order error terms for sufficiently small step sizes in space and time. Asymptotic control in a discrete L2L_2-norm is achieved through tolerance proportionality and uniform or adaptive mesh refinement. Numerical examples are used to illustrate the reliability of the estimation and control strategies

    POD model order reduction with space-adapted snapshots for incompressible flows

    Full text link
    We consider model order reduction based on proper orthogonal decomposition (POD) for unsteady incompressible Navier-Stokes problems, assuming that the snapshots are given by spatially adapted finite element solutions. We propose two approaches of deriving stable POD-Galerkin reduced-order models for this context. In the first approach, the pressure term and the continuity equation are eliminated by imposing a weak incompressibility constraint with respect to a pressure reference space. In the second approach, we derive an inf-sup stable velocity-pressure reduced-order model by enriching the velocity reduced space with supremizers computed on a velocity reference space. For problems with inhomogeneous Dirichlet conditions, we show how suitable lifting functions can be obtained from standard adaptive finite element computations. We provide a numerical comparison of the considered methods for a regularized lid-driven cavity problem
    • …
    corecore